Eamonn

人生苦短,我用Python

· Python · · 179次浏览

Python OCR

import os
import pytesseract
from PIL import Image
from collections import defaultdict

# tesseract.exe所在的文件路径
pytesseract.pytesseract.tesseract_cmd = r'S://Tesseract-OCR//tesseract.exe'
tessdata_dir_config ='--tessdata-dir "S://Tesseract-OCR//tessdata"'

# 获取图片中像素点数量最多的像素
def get_threshold(image):
    pixel_dict = defaultdict(int)

    # 像素及该像素出现次数的字典
    rows, cols = image.size
    for i in range(rows):
        for j in range(cols):
            pixel = image.getpixel((i, j))
            pixel_dict[pixel] += 1

    count_max = max(pixel_dict.values())  # 获取像素出现出多的次数
    pixel_dict_reverse = {v: k for k, v in pixel_dict.items()}
    threshold = pixel_dict_reverse[count_max]  # 获取出现次数最多的像素点

    return threshold


# 按照阈值进行二值化处理
# threshold: 像素阈值
def get_bin_table(threshold):
    # 获取灰度转二值的映射table
    table = []
    for i in range(256):
        rate = 0.1  # 在threshold的适当范围内进行处理
        if threshold * (1 - rate) <= i <= threshold * (1 + rate):
            table.append(1)
        else:
            table.append(0)
    return table


# 去掉二值化处理后的图片中的噪声点
def cut_noise(image):
    rows, cols = image.size  # 图片的宽度和高度
    change_pos = []  # 记录噪声点位置

    # 遍历图片中的每个点,除掉边缘
    for i in range(1, rows - 1):
        for j in range(1, cols - 1):
            # pixel_set用来记录该店附近的黑色像素的数量
            pixel_set = []
            # 取该点的邻域为以该点为中心的九宫格
            for m in range(i - 1, i + 2):
                for n in range(j - 1, j + 2):
                    if image.getpixel((m, n)) != 1:  # 1为白色,0位黑色
                        pixel_set.append(image.getpixel((m, n)))

            # 如果该位置的九宫内的黑色数量小于等于4,则判断为噪声
            if len(pixel_set) <= 4:
                change_pos.append((i, j))

    # 对相应位置进行像素修改,将噪声处的像素置为1(白色)
    for pos in change_pos:
        image.putpixel(pos, 1)

    return image  # 返回修改后的图片


# 识别图片中的数字加字母
# 传入参数为图片路径,返回结果为:识别结果
def OCR_lmj(img_path):
    image = Image.open(img_path)  # 打开图片文件
    imgry = image.convert('L')  # 转化为灰度图

    # 获取图片中的出现次数最多的像素,即为该图片的背景
    max_pixel = get_threshold(imgry)

    # 将图片进行二值化处理
    table = get_bin_table(threshold=max_pixel)
    out = imgry.point(table, '1')

    # 去掉图片中的噪声(孤立点)
    out = cut_noise(out)
    # out.show()


    # 保存图片
    # out.save('E://figures/img_gray.jpg')

    # 仅识别图片中的数字
    # text = pytesseract.image_to_string(out, config='digits')
    # 识别图片中的数字和字母
    # text = pytesseract.image_to_string(out)
    text = pytesseract.image_to_string(out, lang='eng', config=tessdata_dir_config)
    # 去掉识别结果中的特殊字符
    exclude_char_list = ' .:\\|\'\"?![],()~@#$%^&*_+-={};<>/¥'
    text = ''.join([x for x in text if x not in exclude_char_list])
    # print(text)

    return text


def main():
    # 识别指定文件目录下的图片
    # 图片存放目录figures
    dir = r'F:\Note\KNN_test\pic'

    correct_count = 0  # 图片总数
    total_count = 0  # 识别正确的图片数量

    # 遍历figures下的png,jpg文件
    for file in os.listdir(dir):
        if file.endswith('.png') or file.endswith('.jpg'):
            # print(file)
            image_path = '%s/%s' % (dir, file)  # 图片路径

            answer = file.split('.')[0]  # 图片名称,即图片中的正确文字
            recognizition = OCR_lmj(image_path)  # 图片识别的文字结果

            print((answer, recognizition))
            if recognizition == answer:  # 如果识别结果正确,则total_count加1
                correct_count += 1

            total_count += 1

    print('Total count: %d, correct: %d.' % (total_count, correct_count))


    '''
    # 单张图片识别
    # image_path = r'F:\\Note\KNN_test\\11.jpg'
    # recognizition = OCR_lmj(image_path)
    # print(recognizition)
    '''


if __name__ == '__main__':
    main()
评论 (0条)